Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Agric Food Chem ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613504

ABSTRACT

The day-old male chick culling remains a welfare issue in the poultry industry. Several governments have prohibited this practice, pushing hatcheries to seek alternatives. Although different solutions exist for solving this problem, sex determination during the embryo's incubation (in ovo sexing) is considered the most suitable one among the consumers and industry. However, to be industrialized, in ovo sexing technologies must meet several requirements: compatibility with all egg colors and early developmental stages while maintaining a high hatchability rate and accuracy at low cost and high throughput. To meet these requirements, we studied the use of the sexual genes HINTW (female-specific) and DMRT-1 (both sexes) at incubation days 6-9. By utilizing the quantitative polymerase chain reaction in allantoic fluid (AF) samples, our study confirmed female-specific HINTW detection on all days without any significant detrimental effects on embryo development. We achieved 95% sexing accuracy using the HINTW cycle threshold (Ct) alone and 100% accuracy rate when using Δλ values (difference between the HINTW and DMRT-1 Ct). In conclusion, the developed assay can provide information about AF as a sample for in ovo sexing and open new industrial possibilities for faster and cheaper assays.

2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761982

ABSTRACT

DNA-based enzymes, or DNAzymes, are single-stranded DNA sequences with the ability to catalyze various chemical reactions, including the cleavage of the bond between two RNA nucleotides. Lately, an increasing interest has been observed in these RNA-cleaving DNAzymes in the biosensing and therapeutic fields for signal generation and the modulation of gene expression, respectively. Additionally, multiple efforts have been made to study the effects of the reaction environment and the sequence of the catalytic core on the conversion of the substrate into product. However, most of these studies have only reported alterations of the general reaction course, but only a few have focused on how each individual reaction step is affected. In this work, we present for the first time a mathematical model that describes and predicts the reaction of the 10-23 RNA-cleaving DNAzyme. Furthermore, the model has been employed to study the effect of temperature, magnesium cations and shorter substrate-binding arms of the DNAzyme on the different kinetic rate constants, broadening the range of conditions in which the model can be exploited. In conclusion, this work depicts the prospects of such mathematical models to study and anticipate the course of a reaction given a particular environment.


Subject(s)
DNA, Catalytic , Catalysis , Catalytic Domain , DNA, Single-Stranded/genetics , RNA/genetics
3.
J Anim Sci Biotechnol ; 14(1): 102, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452378

ABSTRACT

Numerous researchers and institutions have been developing in ovo sexing technologies to improve animal welfare by identifying male embryos in an early embryonic stage and disposing of them before pain perception. This review gives a complete overview of the technological approaches reported in papers and patents by performing a thorough search using Web of Science and Patstat/Espacenet databases for papers and patents, respectively. Based on a total of 49 papers and 115 patent families reported until May 2023 worldwide, 11 technology categories were defined: 6 non-optical and 5 optical techniques. Every category was described for its characteristics while assessing its potential for application. Next, the dynamics of the publications of in ovo sexing techniques in both paper and patent fields were described through growth curves, and the interest or actual status was visualized using the number of paper citations and the actual legal status of the patents. When comparing the reported technologies in papers to those in patents, scientific gaps were observed, as some of the patented technologies were not reported in the scientific literature, e.g., ion mobility and mass spectrometry approaches. Generally, more diverse approaches in all categories were found in patents, although they do require more scientific evidence through papers or industrial adoption to prove their robustness. Moreover, although there is a recent trend for non-invasive techniques, invasive methods like analyzing DNA through PCR or hormones through immunosensing are still being reported (and might continue to be) in papers and patents. It was also observed that none of the technologies complies with all the industry requirements, although 5 companies already entered the market. On the one hand, more research and harmony between consumers, industry, and governments is necessary. On the other hand, close monitoring of the market performance of the currently available techniques will offer valuable insights into the potential and expectations of in ovo sexing techniques in the poultry industry.

4.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835174

ABSTRACT

Extracellular vesicles (EVs) have attracted great attention as potential biomarkers for cancer diagnostics. Although several technologies have been developed for EV detection, many of them are still not applicable to clinical settings as they rely on complex EV isolation processes, while lacking sensitivity, specificity or standardization. To solve this problem, we have developed a sensitive breast cancer-specific EV detection bioassay directly in blood plasma using a fiber-optic surface plasmon resonance (FO-SPR) biosensor, previously calibrated with recombinant EVs. First, we established a sandwich bioassay to detect SK-BR-3 EVs by functionalizing the FO-SPR probes with anti-HER2 antibodies. A calibration curve was built using an anti-HER2/Banti-CD9 combination, resulting in an LOD of 2.1 × 107 particles/mL in buffer and 7 × 108 particles/mL in blood plasma. Next, we investigated the potential of the bioassay to detect MCF7 EVs in blood plasma using an anti-EpCAM/Banti-mix combination, obtaining an LOD of 1.1 × 10 8 particles/mL. Finally, the specificity of the bioassay was proven by the absence of signal when testing plasma samples from 10 healthy people unknown to be diagnosed with breast cancer. The remarkable sensitivity and specificity of the developed sandwich bioassay together with the advantages of the standardized FO-SPR biosensor highlight outstanding potential for the future of EV analysis.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Extracellular Vesicles , Female , Humans , Biomarkers , Biosensing Techniques/methods , Breast Neoplasms/diagnosis , Surface Plasmon Resonance/methods
5.
Small Methods ; 7(3): e2201477, 2023 03.
Article in English | MEDLINE | ID: mdl-36642827

ABSTRACT

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.


Subject(s)
COVID-19 , Microfluidics , Humans , Microfluidics/methods , SARS-CoV-2 , Antibodies , Saccharomyces cerevisiae/genetics
6.
Trends Biotechnol ; 41(6): 769-784, 2023 06.
Article in English | MEDLINE | ID: mdl-36369053

ABSTRACT

Fluorescence in situ hybridization (FISH) is the gold standard for visualizing genomic DNA in fixed cells and tissues, but it is incompatible with live-cell imaging, and its combination with RNA imaging is challenging. Consequently, due to its capacity to bind double-stranded DNA (dsDNA) and design flexibility, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) technology has sparked enormous interest over the past decade. In this review, we describe various nucleic acid (NA)- and protein-based (amplified) signal generation methods that achieve imaging of repetitive and single-copy sequences, and even single-nucleotide variants (SNVs), next to highly multiplexed as well as dynamic imaging in live cells. With future progress in the field, the CRISPR-(d)Cas9-based technology promises to break through as a next-generation cell-imaging technique.


Subject(s)
CRISPR-Cas Systems , Genome , In Situ Hybridization, Fluorescence , DNA/genetics , DNA/metabolism , Diagnostic Imaging
7.
Int J Offender Ther Comp Criminol ; : 306624X221132993, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36331110

ABSTRACT

This paper analyses the normative framework governing the punishment of community service in Serbian criminal legislation. In this legislation, community service is prescribed as a criminal sanction. Accordingly, the paper has analyzed the provisions of every law that regulates this criminal sanction as well as statistics. A good normative framework is a precondition for the proper implementation of all legal institutes, including community service. Comprehensive analysis of the substantive, procedural, and executive regulations related to the punishment in question, seeks to identify certain failures in its regulations, as well as to give certain suggestions de lege ferenda.

8.
Biosens Bioelectron ; 208: 114189, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35366427

ABSTRACT

Therapeutic drug monitoring (TDM) of adalimumab (ADM) at the point-of-care (POC) is key to prevent loss of response but has not been accomplished to date because true POC testing solutions are still lacking. Here, we present a novel "whole blood in - result out" self-powered microfluidic chip for detecting ADM within 30 min to enable TDM at POC. Hereto, we first demonstrated on-chip plasma separation from whole blood, followed by downscaling an ADM ELISA with maintained specificity and sensitivity in plasma. This assay was then performed on a robust and easy-to-use microfluidic chip we designed based on (i)SIMPLE technology, allowing autonomous function upon single finger press activation, which was successfully validated with patient samples. Herein, we prove the potential of our technology to detect targets starting from whole blood introduced directly on-chip and to integrate various immunoassays, both for TDM and other in vitro diagnostics applications, like infectious diseases.


Subject(s)
Autoimmune Diseases , Biosensing Techniques , Adalimumab/therapeutic use , Autoimmune Diseases/diagnosis , Autoimmune Diseases/drug therapy , Drug Monitoring , Humans , Lab-On-A-Chip Devices , Point-of-Care Systems , Point-of-Care Testing
9.
Biosens Bioelectron ; 206: 114140, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35247858

ABSTRACT

In recent years, CRISPR-Cas (stands for: clustered regularly interspaced short palindromic repeats - CRISPR associated protein) based technologies have gained increasing attention in the biosensing field. Thanks to excellent sequence specificity, their use is of particular interest for detecting nucleic acid (NA) targets. In this context, signal generation and amplification can be realized by employing the cis-cleavage activity of the Cas9 protein, although other options involving the catalytically inactive dead Cas9 (dCas9) are increasingly explored. The latter are however mostly based on complex protein engineering processes and often lack efficient signal amplification. Here we showed for the first time that flexible signal generation and amplification properties can be integrated into the CRISPR-dCas9 complex based on a straightforward incorporation of a DNA sequence into the trans-activating CRISPR RNA (tracrRNA). The intrinsic nuclease activity of the engineered complex remained conserved, while the incorporated DNA stretch enabled two modes of amplified fluorescent signal generation: (1) as an RNA-cleaving DNA-based enzyme (DNAzyme) or (2) as hybridization site for biotinylated DNA probes, allowing subsequent enzyme labeling. Both signal generation strategies were demonstrated in solution as well as while coupled to a solid surface. Finally, in a proof of concept bioassay, we demonstrated the successful detection of single stranded DNA on magnetic microbeads using the engineered CRISPR-dCas9 complex. Thanks to the flexibility of incorporating different NA-based signal generation and amplification strategies, this novel NA engineering approach holds enormous promise for many new CRISPR-based biosensing applications.


Subject(s)
Biosensing Techniques , DNA, Catalytic , CRISPR-Cas Systems/genetics , DNA , DNA, Catalytic/genetics , RNA
10.
Biosens Bioelectron ; 206: 114125, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35255315

ABSTRACT

Disease treatment with advanced biological therapies such as adalimumab (ADM), although largely beneficial, is still costly and suffers from loss of response. To tackle these aspects, therapeutic drug monitoring (TDM) is proposed to improve treatment dosing and efficacy, but is often associated with long sampling-to-result workflows. Here, we present an in-house constructed ADM-sensor, allowing TDM of ADM at the doctor's office. This biosensor brings fiber optic surface plasmon resonance (FO-SPR), combined with self-powered microfluidics, to a point of care (POC) setting for the first time. After developing a rapid FO-SPR sandwich bioassay for ADM detection on a commercial FO-SPR device, this bioassay was implemented on the fully-integrated ADM-sensor. For the latter, we combined (I) a gold coated fiber optic (FO) probe for bioassay implementation and (II) an FO-SPR readout system with (III) the self-powered iSIMPLE microfluidic technology empowering plasma sample and reagent mixing on the-cartridge as well as connection to the FO-SPR readout system. With a calculated limit of detection (LOD) of 0.35 µg/mL in undiluted plasma, and a total time-to-result (TTR) within 12 min, this innovative biosensor demonstrated a comparable performance to existing POC biosensors for ADM quantification in patient plasma samples, while requiring only 1 µL of plasma. Whereas this study demonstrates great potential for FO-SPR biosensing at the POC using ADM as a model case, it also shows huge potential for bedside TDM of other drugs (e.g. other immunosuppressants, anti-epileptics and antibiotics), as the bioassay is highly amenable to adaptation.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Adalimumab , Drug Monitoring , Fiber Optic Technology , Humans , Microfluidics , Point-of-Care Systems
11.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163438

ABSTRACT

Single cell analyses have gained increasing interest over bulk approaches because of considerable cell-to-cell variability within isogenic populations. Herein, flow cytometry remains golden standard due to its high-throughput efficiency and versatility, although it does not allow to investigate the interdependency of cellular events over time. Starting from our microfluidic platform that enables to trap and retain individual cells on a fixed location over time, here, we focused on unraveling kinetic responses of single Saccharomyces cerevisiae yeast cells upon treatment with the antifungal plant defensin HsAFP1. We monitored the time between production of reactive oxygen species (ROS) and membrane permeabilization (MP) in single yeast cells for different HsAFP1 doses using two fluorescent dyes with non-overlapping spectra. Within a time frame of 2 min, only <0.3% cells displayed time between the induction of ROS and MP. Reducing the time frame to 30 s did not result in increased numbers of cells with time between these events, pointing to ROS and MP induction as highly dynamic and correlated processes. In conclusion, using an in-house developed continuous microfluidic platform, we investigated the mode of action of HsAFP1 at single cell level, thereby uncovering the close interdependency between ROS induction and MP in yeast.


Subject(s)
Defensins/pharmacology , Fungicides, Industrial/pharmacology , Heuchera/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/growth & development , Cell Membrane Permeability/drug effects , Coral Bleaching , Microbial Viability/drug effects , Microfluidic Analytical Techniques , Plant Proteins/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Single-Cell Analysis , Time Factors
12.
ACS Sens ; 7(2): 477-487, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35061357

ABSTRACT

The ongoing COVID-19 pandemic has emphasized the urgent need for rapid, accurate, and large-scale diagnostic tools. Next to this, the significance of serological tests (i.e., detection of SARS-CoV-2 antibodies) also became apparent for studying patients' immune status and past viral infection. In this work, we present a novel approach for not only measuring antibody levels but also profiling of binding kinetics of the complete polyclonal antibody response against the receptor binding domain (RBD) of SARS-CoV-2 spike protein, an aspect not possible to achieve with traditional serological tests. This fiber optic surface plasmon resonance (FO-SPR)-based label-free method was successfully accomplished in COVID-19 patient serum and, for the first time, directly in undiluted whole blood, omitting the need for any sample preparation. Notably, this bioassay (1) was on par with FO-SPR sandwich bioassays (traditionally regarded as more sensitive) in distinguishing COVID-19 from control samples, irrespective of the type of sample matrix, and (2) had a significantly shorter time-to-result of only 30 min compared to >1 or 4 h for the FO-SPR sandwich bioassay and the conventional ELISA, respectively. Finally, the label-free approach revealed that no direct correlation was present between antibody levels and their kinetic profiling in different COVID-19 patients, as another evidence to support previous hypothesis that antibody-binding kinetics against the antigen in patient blood might play a role in the COVID-19 severity. Taking all this into account, the presented work positions the FO-SPR technology at the forefront of other COVID-19 serological tests, with a huge potential toward other applications in need for quantification and kinetic profiling of antibodies.


Subject(s)
COVID-19 , Surface Plasmon Resonance , Antibodies, Viral , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Surface Plasmon Resonance/methods
13.
Biosens Bioelectron ; 192: 113549, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34391067

ABSTRACT

We present an innovative multiplexing concept on a fiber optic surface plasmon resonance (FO-SPR) platform and demonstrate for the first time the simultaneous detection of two targets using the same FO sensor probe. Co(III)-NTA chemistry was used for oriented and stable co-immobilization of two different His6-tagged bioreceptors. T2C2 and MDTCS (i.e. fragments of the ADAMTS13 metalloprotease linked to the thrombotic thrombocytopenic purpura disorder) served as model system bioreceptors together with their respective targets (4B9 and II-1 antibodies). Gold nanoparticles were used here in an original way for discriminating the two targets in the same sample, in addition to their traditional signal amplification-role. After verifying the specificity of the selected model system, we studied the bioreceptor surface density and immobilization order. Innovative approach to lower the bioreceptor concentration below surface saturation resulted in an optimal detection of both targets, whereas the order of immobilization of the two bioreceptors did not give any significant difference. By sequentially immobilizing the T2C2 and MDTC bioreceptors, we established calibration curves in buffer and 100-fold diluted human blood plasma. This resulted in calculated limits of detection of 3.38 and 2.31 ng/mL in diluted plasma for 4B9 and II-1, respectively, indicating almost the same sensitivity as in buffer. Importantly, we also proved the applicability of the established calibration curves for quantifying the targets at random and more realistic ratios, directed by the design of experiments. This multiplexing study further expands the repertoire of applications on the FO-SPR biosensing platform, which together with its intrinsic features opens up great opportunities for diagnostics and life sciences.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Fiber Optic Technology , Gold , Humans , Surface Plasmon Resonance
14.
Anal Bioanal Chem ; 413(20): 4925-4937, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34184101

ABSTRACT

Testing multiple biomarkers, as opposed to one, has become a preferred approach for diagnosing many heterogeneous diseases, such as cancer and infectious diseases. However, numerous technologies, including gold standard ELISA and PCR, can detect only one type of biomarker, either protein or nucleic acid (NA), respectively. In this work, we report for the first time simultaneous detection of proteins and NAs in the same solution, using solely functional NA (FNA) molecules. In particular, we combined the thrombin binding aptamer (TBA) and the 10-23 RNA-cleaving DNA enzyme (DNAzyme) in a single aptazyme molecule (Aptazyme1.15-3'), followed by extensive optimization of buffer composition, sequences and component ratios, to establish a competitive bioassay. Subsequently, to establish a multiplex bioassay, we designed a new aptazyme (Aptazyme2.20-5') by replacing the target recognition and substrate sequences within Aptazyme1.15-3'. This designing process included an in silico study, revealing the impact of the target recognition sequence on the aptazyme secondary structure and its catalytic activity. After proving the functionality of the new aptazyme in a singleplex bioassay, we demonstrated the capability of the two aptazymes to simultaneously detect thrombin and NA target, or two NA targets in a multiplex bioassay. High specificity in target detection was achieved with the limits of detection in the low nanomolar range, comparable to the singleplex bioassays. The presented results deepen the barely explored features of FNA for diagnosing multiple targets of different origins, adding an extra functionality to their catalogue.


Subject(s)
Biological Assay/methods , Biosensing Techniques/methods , DNA, Catalytic/metabolism , DNA/chemistry , Nucleic Acids/chemistry , Thrombin/chemistry , DNA, Catalytic/chemistry , Humans , Nanotechnology , Reproducibility of Results
15.
Adv Mater ; 33(25): e2008712, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33969565

ABSTRACT

Rapid diagnostic testing at the site of the patient is essential when a fully equipped laboratory is not accessible. To maximize the impact of this approach, low-cost, disposable tests that require minimal user-interference and external equipment are desired. Fluid transport by capillary wicking removes the need for bulky ancillary equipment to actuate and control fluid flow. Nevertheless, current microfluidic paper-based analytical devices based on this principle struggle with the implementation of multistep diagnostic protocols because of fabrication-related issues. Here, 3D-printed microfluidic devices are demonstrated in a proof-of-concept enzyme-linked immunosorbent assay in which a multistep assay timeline is completed by precisely engineering capillary wetting within printed porous bodies. 3D printing provides a scalable route to low-cost microfluidic devices and obviates the assembly of discrete components. The resulting rapid and seamless transition between digital data and physical objects allows for rapid design iterations, and opens up perspectives on distributed manufacturing.


Subject(s)
Lab-On-A-Chip Devices , Printing, Three-Dimensional
16.
J Extracell Vesicles ; 10(4): e12059, 2021 02.
Article in English | MEDLINE | ID: mdl-33664936

ABSTRACT

Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/Banti-CD81 and anti-CD63/Banti-CD9), resulting in 103 and 104 times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/Banti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCAM antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis.


Subject(s)
Biological Assay/methods , Biological Assay/standards , Biosensing Techniques/methods , Calibration , Extracellular Vesicles/chemistry , Antibodies/chemistry , Fiber Optic Technology/methods , HEK293 Cells , Humans , MCF-7 Cells , Neoplasms/chemistry , Neoplasms/diagnosis , Plasma/chemistry , Reference Standards , Surface Plasmon Resonance/methods
17.
ACS Appl Mater Interfaces ; 13(2): 2316-2326, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33411502

ABSTRACT

Retrieving single cells of interest from an array of microwells for further off-chip analysis is crucial in numerous biological applications. To this end, several single cell manipulation strategies have been developed, including optical tweezers (OT). OT represent a unique approach for contactless cell retrieval, but their performance is often suboptimal due to nonspecific cell adhesion to the microwell surface. In this study, we focused on improving the surface chemistry of microwell arrays to ensure efficient single cell manipulation using OT. For this purpose, the surface of an off-stoichiometry thiol-ene-epoxy (OSTE+) microwell array was grafted with polyethylene glycol (PEG) molecules with different molecular weights: PEG 360, PEG 500, PEG 2000, and a PEG Mix (an equimolar ratio of PEG 500 and PEG 2000). Contact angle measurements showed that the PEG grafting process resulted in an increased surface energy, which was stable for at least 16 weeks. Next, cell adhesion of two cell types, baker's yeast (Saccharomyces cerevisiae) and human B cells, to surfaces treated with different PEGs was evaluated by registering the presence of cellular motion inside microwells and the efficiency of optical lifting of cells that display motion. Optimal results were obtained for surfaces grafted with PEG 2000 and PEG Mix, reaching an average fraction of cells with motion of over 93% and an average lifting efficiency of over 96% for both cell types. Upon the integration of this microwell array with a polydimethylsiloxane (PDMS) microfluidic channel, PEG Mix resulted in proper washing of non-seeded cells. We further demonstrated the wide applicability of the platform by manipulating non-responding yeast cells to antifungal treatment and B cells expressing surface IgG antibodies. The combination of the optimized microwell surface with continuous microfluidics results in a powerful and versatile platform, allowing high-throughput single cell studies and retrieval of target cells for off-chip analysis.


Subject(s)
Micromanipulation/instrumentation , Optical Tweezers , Polyethylene Glycols/chemistry , Single-Cell Analysis/instrumentation , Sulfhydryl Compounds/chemistry , B-Lymphocytes/cytology , Cell Adhesion , Cells, Cultured , Epoxy Compounds/chemistry , Equipment Design , Humans , Microfluidic Analytical Techniques/instrumentation , Saccharomyces cerevisiae/cytology , Surface Properties
18.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451032

ABSTRACT

To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials.

19.
Anal Chem ; 92(15): 10783-10791, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32638586

ABSTRACT

The polymerase chain reaction (PCR) has been the gold standard molecular analysis technique for decades and has seen quite some evolution in terms of reaction components, methodology, and readout mechanisms. Nucleic acid enzymes (NAzymes) have been used to further exploit the applications of PCR, but so far the work was limited to the colorimetric G-quadruplex or fluorescent substrate cleaving NAzymes. In this study, a solid-phase, fiber optic surface plasmon resonance (FO-SPR) technique is presented as an alternative readout for PCR utilizing NAzymes. First, the surface cleavage activity of DNAzyme-extended amplicons (DNAzyme-amps) is established, followed by optimization of the PCR conditions, which are required for compatibility with the FO-SPR system. Next, by integrating the complement of a 10-23 DNAzyme into the primer pair, PCR-amplified DNAzyme-amps were generated, tested, and validated on qPCR for the detection of the antimicrobial resistance gene MCR-2. Once validated, this primer concept was developed as a one-step assay, driven by PCR-amplified DNAzymes, for FO-SPR-based sensitive and specific detection. Using gold nanoparticle labeled RNA-DNA hybrid strands as substrate for the DNAzyme, PCR-amplified DNAzyme-amps generated in the presence of MCR-2 gene were monitored in real-time, which resulted in an experimental limit of detection of 4 × 105 copy numbers or 6.6 fM. In addition, the DNAzyme-based FO-PCR assay was able to discriminate between the MCR-1 and MCR-2 genes, to further prove the specificity of this assay. Henceforth, this DNAzyme-based fiber optic PCR assay provides a universally applicable, real-time system for the detection of virtually any target NA, in a specific and sensitive manner.


Subject(s)
DNA, Catalytic/genetics , DNA, Catalytic/metabolism , Membrane Proteins/genetics , Optical Fibers , Polymerase Chain Reaction , Surface Plasmon Resonance/instrumentation , Calibration , Time Factors
20.
Trends Biotechnol ; 38(12): 1343-1359, 2020 12.
Article in English | MEDLINE | ID: mdl-32473751

ABSTRACT

Nucleic acid enzymes (NAzymes) are nucleic acid molecules with catalytic activity. A subset, the RNA-cleaving NAzyme, is characterized by its substrate of choice: an RNA unit. These enzymes have been used for diverse applications, including biosensor development, akin to their protein counterparts. Owing to their function as both biorecognition elements and signal generators, robust bioassays based entirely on NAzyme molecules have been developed. Additionally, unique mechanisms for integration with other biorecognition elements and signal generation methods have been explored to realize ultrasensitive, specific, and user-friendly biosensors. Furthermore, NAzyme-based bioassays have already broken into the in vitro diagnostics market, with more promise in the pipeline.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Biosensing Techniques/trends , DNA, Catalytic/metabolism , RNA/metabolism , RNA, Catalytic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...